Wednesday, February 13, 2013

Sustainability in Urban Planning and Design: A Reflective Response


The framing and conceptualization of sustainability in urban and suburban areas plan and design is an important aspect to consider when discussing sustainability. Rob Krueger and David Gibbs’ article on “‘Third Wave’ Sustainability? Smart Growth and Regional Development in the USA” (2008)-looks at urban sustainability from the perspective of the “Smart Growth” discourse, which defines urban growth and development as development that is “sustainably aware,” holistic in nature, and that is “environmentally sensitive, economically viable, community-oriented, and sustainable” (Ye et al., cited in Gibbs and Krueger 2008, pg. 1266). They argued that this kind of growth focuses on regional and urban development planning perspectives with the goal much more similar to that of the compact urban planning perspective. Krueger and Gibbs (2008) asserts that the sustainability science framework that is embedded within the smart growth discourse has a contextualized economic and market-based dimension. To this end, they argued that the smart growth discourse has political and theoretical significance and benefits, which heavily relies on economic mechanisms such as innovation, incentives, and disincentives (Gibbs and Krueger 2008). Gibbs and Krueger (2008) asserts that even though there are different conceptualizations and definitions of what smart growth is and how the concept is operationalized at the urban, regional, and national levels among various stakeholders, there are certain principles that transcend throughout these definitions and geopolitical boundaries. They also added that the concept of “Smart Growth” is constructed on two guiding principles of development goals, which involves a tripartite component of urban development planning (i.e. taking into account in its holistic form the community, environment, and economy) as well as a regulatory reforms aspect, which allows these themes to become functional and operational, without which smart growth can not be achieved (Gibbs and Krueger 2008).
The article on “New Urbanism” by Karen F. Al-Hindi (2001) explored the new urbanism discourse based on empirical research, which sought to answer some pressing and compelling questions concerning for whom the new urbanism discourse is targeting and where such developments are operating with focus on the United States. Al-Hindi (2001) argued that even though the new urbanism discourse would benefit everyone in the long-term as suggested by proponent of this thought; however, in the short-term, it is designated to only benefit those who are design professionals, developers, and those of the upper-class homebuyers’ regime. She noted that the new urbanism sustainability framework is aligned with and supported by several current political and social issues (Al-Hindi 2001). She added that neo-traditional architectures of the 20th Century are depiction of the classical lifestyles of those of the new urbanism school of thought. Al-Hindi also touched on a very sensitive theme and discussion concerning the exclusive and isolated lifestyles of new urbanists-a view that is perpetrated by their belief to be associated with people of the same-mindset, engulfed in gated residential buildings away from those they framed as the “others” (Al-Hindi 2001). The plight to seek for and live by principle of a lifestyle that promotes the local ecological values and environment is sometimes refer to as “Smart Growth”-a term that has gradually developed overtime. Al-Hindi concluded  her work that New Urbanism quickly diffused into the mainstream American society, because it seems to present realistic and straight answers that are premised on the built environment in relations to complex and unparalleled social issues that are embedded in our society.

Works Cited

Al-Hindi, Karen F. (2001). “The New Urbanism: Where and for Whom? Investigation of an Emergent Paradigm.” Urban Geography, Vol. 22, 3, pg. 202-219.
Gibbs, D., Krueger, R. (2008).Third Wave’ Sustainability? Smart Growth and Regional Development in the USA.” Regional Studies, 42:9,1263 — 1274.
Ye L., Mandpe S. and Meyer, P. (2005). “What is Smart Growth – Really?” Journal of Planning Literature 19, 301–319.

Tuesday, February 05, 2013

Framing and Defining the Sustainable Community Discourse: An Overview


Sustainability and sustainable communities are fast growing fields. Part of conceptualizing and defining what a sustainable community is and how it is measured is part of the current discussion on what are the characteristics of a sustainable community. There are various definitions and tools that are used to measure sustainable communities by experts, practitioners and scholars in the fields of sustainability science, sustainable development and environmental sustainability. Agyeman (2005) takes us through various theoretical and policy-based discourses of sustainable development, sustainability science, environmental justice, and environmental sustainability discourses, which emerged since the 1980s when the World Bank redirected its focus to developing countries in providing financial services in the form of large loans to expand their programs in social services rather than solely infrastructural development (World Bank 1980). These efforts, Agyeman noted, led to the establishment of several non-governmental and international non-governmental organizations with diverse, varying and conflicting views of what constitute the concept of “Sustainability” (Agyeman 2005). 
Similarly, in the 1960s the environmental justice movement, which emerged shortly after Rachel Carson’s book entitle “Silent Spring,” details some of the environmental “ills”  and mayhems from a pollutant submerge system and proposes a new “sustainable environmental” approach-a concept too that has far too many definitions and practices. Agyeman identified that with capital intensive sustainability programs; the problem is not associated with the “science of sustainability” or lack of knowledge, but rather the lack off or the inability to act,” which he associates with the Real World Coalition as the “sustainability gap” (Agyeman 2005, pg.40-41). Agyeman also agrees and endorses three interrelated themes that must be adhered to if sustainable development must be “sustainable.” He argues that environmentally sustainable communities or cities must as well be socially sustainable, that analyses and syntheses of development must not start with symptoms of economic and environmental instabilities, but with causes of these deficiencies, which are mostly products of societal ills (Agyeman 2005). He defines sustainability as the “need to ensure a better quality of life for all, now and in the future, in a just and equitable manner, while living in the limits of supporting ecosystems (Agyeman 2003 in Agyeman 2005). The concept of sustainability is an integrated or holistic approach, which captures the entity of nature encompassing its political, socioeconomic, biological, and environmental systems making sure that our current needs are met in an equitable and equal manner without negatively impacting the needs and resources of future generations.
Bookchin (1998) takes a similar twist to the sustainability discourse, but he compares side-by-side the argument from both the social and deep ecological perspectives. His works on social ecology has roots in Marxist ideologies. He argues that the current paradigm of sustainability within the context of the environment has being blinded of the true meaning of what is and what is not sustainability and that this blindness is unique in such a way that it is supported by and base on cheap politics that is self-seeking and ambitious (Bookchin 1988). He also proposes that “more people are moving away from the 1970's environmentalism discourse to a more ecological approach, which is rooted in an ecological philosopher, ethics, sensibility, image of nature and ultimately an ecological movement that will transform the current Capitalistic system of market-based society into a nonhierarchical cooperative system in which consumers, producers, and the natural ecosystems live in balance and with respect to each other” (Bookchin 1998, pg. 242). Bookchin just like Agyeman argues that there are varying views when it comes to the expression of what is “ecology” or “sustainability.” Bookchin agrees with Agyeman that the real problem and causes of environmental or ecological degradation should form an integral part of a deep social problem and should rather be the focus rather than the symptoms that are usually emphasized.
The Lifton (2012) takes us through a journey around the world and allows us to view the environmental and social problems of the world through the lens of a political ecologist, scientist and proponent of the “Ecovillage” movement. Her works analyses the diversities and interrelatedness between Ecovillages in urban areas and those in rural areas as well as high-tech and low-tech areas. She noted that base on her travels and learning experiences from ecovillagers "sharing is one word that summarizes their very existence" (Liftin 2012). She concluded her article that ecovillagers’ capacity to share basic needs and necessities prove to be much lower than the per capita income in their respective home countries, which proves to be much sustainable. However, the question that comes to one mind is that how many of us are willing to sacrifice our resources, time, energy, and family security in this fast depressing economic times to live as Ecovillagers? Is it doable? It is a realistic approach in solving our current environmental, social, and economic mayhems? The answers to these questions depend largely on who is asking the question and what he or she is willing to do to make this a reality. There is no one universal approach in solving the current global problem of massive resource extractions and exploitations. However, every single step makes a difference and the impacts can be tremendous recognize when all these steps are jointly connected locally, nationally, regionally, and globally.
Register’s work on “Ecocities” takes a radical and critical look at the current status of cities vis-à-vis our current civilization and how cities have been a paramount component of our very existence and humanity, which defines us. He argues that with the current unsustainable trend of the development and modeling of modern cities, it is important to rethink how we plan and develop our cities so that it is based on ecological principles and promotes natural systems (Register 2002). He asserts that “what we build creates possibilities for, and limits on, the way we live" (Register 2002, pg.20), which I think captures his work in its entirety.

Works Cited

Agyeman, J. (2005). “The Sustainability Discourse and Sustainable Communities.” Ch 2. In Sustainable Communities and the Challenges of Environmental Justice. New York:  NYU Press.
Bookchin, M. (1988). Social Ecology versus Deep Ecology. Socialist Review 88(3):11-29.
Liftin, K. (2012). Gleanings from the Harvest:  Learning from Eco-Village Experiments around the World. SCORAI Conference. Vancouver, BC. March 8-10, 2012.
Register, R. (2002). As we build so shall we live. Ch 1 in Eco-Cities:  Building Cities in Balance with Nature. Berkeley:  Berkeley Hills Books.
World Bank (1980). "World Bank Historical Chronology: 1970-1979". World Bank Group. http://go.worldbank.org/847R4CBE80. Retrieved 01/20/2013.

Saturday, December 29, 2012

The U.S. Federal Government At-A-Glance: A Political Science Paper



            The United States Government is divided into three branches each of which functions together to complement the other in a “check-and-balance” system. The Executive branch of government is the highest office of the US government, which constitutes the seat of the US Presidency, which is a form of aristocracy form of leadership that was practiced in some European countries at the time the “Founding Fathers” were drafting the U.S. Constitution in Philadelphia, Pennsylvania. This branch of government is responsible for enforcing the laws of the country that the Legislature makes and does not have the constitution rights to make laws of its own or rather interpret laws that the legislature makes. The Judiciary branch of government is responsible for interpreting the laws and this branch also serves as an eye on the president’s actions and activities. Each branch of government in the US is a distinct organ that can function separately of the other in completing the whole.
            In the case of Medellin v. Texas, the President does not have the constitutional right to demand states to adhere to the World Court ruling. The Judiciary branch is the branch of government that must be free of external influence of the other branches of government, if it should really be impartial and “blind” in the eyes of the beholder. The President is the highest person in the government, but that does not give him the right to make laws or demand the court of what it is expected to do. The President of the United States has the legitimate and constitutional rights to make treaty with other countries about issues of international policy in the interest of the United States, but his ability to turn international treaty into laws within the borders of the United States is illegitimate and unconstitutional.
            Laws made outside of the parameters of the Unites States that is contradictory to the laws of any states of the US cannot be binding. States have the right to adopt anything they feel are right for its people and within the frameworks of the US constitution as well as the individual states, and it also avoid laws that infringes on the constitution. In the specific case involving Medellin vs. Texas in which the court in Texas ruled against Medellin for murder and also failing to announce his reliance on the Vienna Convention in which the World Court ruled that the Texas Court must review their decision of the case involving Medellin.
            The traditional court procedures in the United States must be free from the influences of international treaty that the other branches of government make.  The President does not have the right to enforce international treaties with other nations or institutions as binding on the US court to be obliged to obey said treaties as laws. According to the argument supported by most of the Justices that the obligations largely depended on the diplomatic processes of member states that signed to the Vienna Convention and did not require the court systems to enforced it. Justice Roberts furthered deliberated on the premise upon which the Founding Fathers established the court system which means that “procedures that must be followed before Federal Laws can be created under the Constitution — vesting that decision in the political branches, subject to checks and balances.” He further states that the President handing over the task of the Judiciary to determine if an international treaty becomes laws that will be binding on the country does not only portray the Judiciary branch of government the authority to interpret laws, but to also make laws which in a sense is unconstitutional and wasn’t the intent of the Framers. This would also complicate the legal systems and there will not be transparencies as each branch will soon be making, enforcing and interpreting the laws and if this situation exists, it wouldn’t be different from anarchism.
            In regards to whether the president has the power to have the judiciary branch to make international treaties binding on the US is a matter that must be determine through the legal process of law through the Congress or master-minded in the Constitution itself and that the President’s authority does not fit in that respect. The President does not have the authority or power to make international treaties a binding domestic law of the United States. If a particular treaty is proposed by the President to Congress to be considered as a domestic law of the country, the decision must stem from Congress or it must have been stated and supported by the Constitution.

Reference Story can be accessed at: http://sentencing.typepad.com/sentencing_law_and_policy/2008/03/states-win-over.html Retrieved: 03/15/2008.

Saturday, December 15, 2012

LIGHTING THE ACADEMIC COMMONS: A Case Study of Electricity Efficiency of Incandescent, Compact Fluorescent and LED Lamps at Clark University


December 15, 2012


Proposed AC LED GRID LAMP

ABSTRACT


This project explored the efficiency of the lighting system at the Academic Commons (AC) at the Goddard Library at Clark University as part of an academic research paper for the Technology for Renewable Energy course taught by Dr. Charles Agosta, Chair of the Physics Department. The study builds on students' responses to informal and open-ended surveys and electricity energy consumption data from the lighting systems. The data were analyzed using MS Excel 2010 by conducting descriptive statistics on demographic characteristics and statistical analysis of electricity used via lighting to determine energy cost, savings, CO2 emissions, and offsets by comparing the status quo against two hypothetical scenarios. The results indicate that, while the status quo (CFL light bulbs) electricity consumption seems efficient in terms of CO2 emissions and cost compared to incandescent light bulbs, converting the lighting systems to LEDs would reduce CO2 emissions substantially  and contributes to Clark's goal of zero emissions by 2020 thereby saving cost. The result also suggests that Clark would be saving about $3,687.00/year in lighting systems at the AC, while reducing 18,420 lbs of CO2/year against  status quo of 147,355 lbs of CO2/year.


INTRODUCTION

Globally, the production, distribution, and consumption of electricity through the excessive burning of fossil fuels are some of the leading causes of anthropogenic greenhouse gas (GHG) emissions (IPCC, 2001; Watson et al., 2001). As population increase exponentially, the demand for electricity for industrial, commercial institutions, and residential consumption will also continue to increase. In the United States, electricity production and consumption is projected to increase by 2020 to approximately 40% (Pimentel et al., 2003). As of 2004, excluding industrial energy consumption, it is estimated that the “total energy consumption for electricity for commercial institutions have doubled at an annual growth rate of 2.1 percent as well as transportation and residential annual energy consumption growth rate at 6.1 and 1.3, respectively” (EPA, 2007). Electricity generation in the US from finite sources of fossil fuels, such as petroleum, natural gas, coal, and other fuels account for approximately 93% of its energy demands at an estimated cost of approximately $567 billion per year (ClarkU, 2007; Pimentel, et al., 2003). This paradox does not seem to be changing as our desire and reliance on fossil fuels for electricity generation continue to increase as we explore new territories.

The dominant system of electrical power production is such that the rate of extraction of fossil fuels from the Earth’s surface is unsubstantiated by its regeneration rate leading to an unsustainable and inefficient linear system of exploitation, use, and abuse. As global temperature continues to increase at an unprecedented rate because of anthropogenic GHG emissions from the burning of fossil fuels, the need to rethink our electricity production, distribution, and utilization patterns become a compelling and unparalleled phenomenon that evoke a moral and environmental urgency and responsibility to act in order to reduce GHG at the 1990s levels by 2020 (DOE, 2003; IPCC, 2001, 2007). 

Reports has shown that college and university campuses on an annual basis emit large amount of GHG (C02) into the atmosphere specifically through the indiscriminate use of lighting systems, computers utilization, and other energy consuming devices or gadgets (DOE, 2003; York, 1980). The increasing attention driven to tracking and reducing our ecological footprints paved the way to a paradigm shift on how students, staff, and policy-makers within the context of higher education perceive and operationalize energy use, specifically electricity (power) production, distribution, and consumption (ClarkU, 2007). Against this background, the efficient and sustainable use of energy (i.e. electricity in general and lighting in particular) is paramount in shaping behaviors, consciousness, attitudes, and approaches of private and public educational institutions to a more sustainable and environmentally friendly future. 

This paradigm shift led to the development of various Climate Action Plans (CAPs) on college and university campuses. The overall goal of these CAPs program is to create and promote innovative, sustainable, and efficient solutions for the reduction of GHG emissions and minimize environmental damage by designing and installing energy efficient systems on campuses reinforce (ClarkU, 2007, 2009; DOE, 2003) along with "sustainable behaviors." Over the last few years, this has become a reality at Clark University where electricity generation is generally used for lighting, heating, ventilation, air conditioning (HVAC), computing, refrigeration, and general-purpose use (ClarkU, 2007, 2009). It is reported that reduction in electricity consumption will reduce GHG emissions, pollution, and serves as energy savings for the university (ClarkU, 2007, 2009). There are widespread educational courses and social ventures collaboratively implemented by teachers, students, and staff.

Energy conservation and sustainability has become an urgency and tradition at Clark University (ClarkU, 2009). Clark is still in the process of transitioning to becoming self-sufficient in terms of electricity generation. The university is currently purchasing electricity from the National Grid at the cost of 0.11cent/kilowatt hour and has the capacity to self-generate about 1,600 kW with an advance cogeneration plant (ClarkU, 2007). 

This study explored the electricity consumption for lighting at the Academic Commons (AC) at the Goddard Library at Clark University by assessing electricity cost per kWh per year, the efficiency of the lamps, energy savings, and CO2 emissions in pounds (lbs.) and metric tons per year for about 161 Compact Fluorescent Lamps (CFLs) currently installed at the AC. The results are compared side-by-side with two hypothetical scenarios of the less efficient incandescent lamps and the more efficient light-emitting diode (LED) lamps with the same lumens output per Watt. The essence of this comparison is to determine the current state of electricity consumption through the lighting system at the AC, its efficiency, savings, and CO2 emissions and what alternative lamp could be substituted to ensure sustainable and efficient use of electricity as well as the associated savings, cost, and reduction in C02 per year. 

Research Objective 

The study explored the electricity consumed at the AC for lighting purposes during the academic year, its associated cost, energy savings (if any), and CO2 emissions. This assessment was accomplished by the comparing electricity consumption of the status quo (CLFs) with two hypothetical scenarios (standard incandescent and LED) lamps to assess electricity cost per kWh per year, the efficiency of the lamps, energy savings, and CO2 emissions in pounds (lbs.) and metric tons per year for all 161 lamps at the AC. 

Research Question 
The research was guided by the general assumption that the 161 CFL lamps installed in the AC are energy efficient, but needed to be replaced by more efficient LED lamps that would substantially reduce the ecological footprint of the facility as the Goddard Library is that largest emitter of GHG on campus. Apart from demographic characteristics of respondents, the following sub-questions guided the process in collecting survey data from students of their perception of the current lighting systems at the AC. The sub-questions that respondents were asked include the following:

1. On an average basis, how many hours do you use the AC per week during the academic semester? 
2. Whether or not they were satisfied with the lamps at the AC? 
3. Whether or not the lamps at the AC were energy efficient? 
4. Whether or not they would recommend changing the lamps at the AC? 
5. How would you describe the electricity (lighting) use at the AC? 
6. What do you usually do when you are at the AC? 

THE GODDARD LIBRARY AND ACADEMIC COMMONS AT CLARK UNIVERSITY 

Clark University is known in the City of Worcester for its campus-based and cutting-edge projects and facilities that seek to promote education, students’ comfort, environmental sustainability, and energy efficiency. The library was named after Dr. Robert Goddard, professor and physicist who invented the rocket technology that set the stage for space exploration. The Academic Commons (AC) is a new addition to the Goddard Library as before, the current area situated as the AC was part of the library. The renovation of the first floor of the library into the AC has help reshaped the outlook of the Clark’s main library into a modernize and attractive facility that foster learning, comfort, cutting-edge computers technology, and other resources for students.

The renovation of the first floor included redesigning of the existing spaces, installation of the Jazzman Café’, a computer lab, a silent reading space, the University’s Escort Services, HelpDesk, four restrooms for students convenience and the construction of a 11,000 square feet accomplished by completely enclosing the initial first floor of the library. The AC continues to provide “traditional and electronic resources, including Goddard's collection of more than 375,000 volumes, 275,000 monographs, subscriptions to 1,500 periodicals, full Internet access, nearly 50 subject-specific databases and a public online catalog available 24-hours a day” (www.freethehikers.org). 

The AC is one of the busiest facilities on campus that is open to students 24 hours per day 7 days per week and operates in this manner throughout the academic year. The AC currently has 161 CFLs installed on the ceiling of the Goddard Library. These lamps counted in the survey do not include those in the offices of the HelpDesk, the Mosakowski Institute for Public Enterprise, and the University Archives. The lamps counted include Jazzman, Escort Services, HelpDesk, the computer lab, the Silent Study Room, the printing room, the area around the vending machines, hallways, the four restrooms in the AC and the open space. During bright sunny days, lights in the AC are illuminated even though the windows are designed and structured in such a way that enough daylight infiltrates the glass windows prompting good brightness, visibility and security. It is important to assess the amount of energy use for lighting purposes at the AC and if necessary how we can improve it to be more energy efficient and sustainable in our fight to create and promote a “greener” campus and behavior change within an urban landscape and environment that foster these practices. 

MATERIALS & METHODS

In this study, I used the quantitative research approach in the process of data collection and analysis. Data for electricity consumption by CFL at the AC were derived from manual process, which include developing sketched ceiling plan of the entire AC and mapping into the sketch the location of each CFL into the plan. In consultation with Physical Plant and Dr. Charles Agosta, it was determined that the lamps installed in the AC were 30 Watts/1600 lumens with efficiency of 53% and a total of 161 lamps were installed. I counted the number of light bulbs at the AC and sketched it manually during three separate days of the week. 

I also conducted a short survey on index cards to fifty-five (55) students on three (3) separate days of the week (Monday, Wednesday and Friday). I used the targeted sampling approach to identified respondents base on their availability and willingness to participate in the brief survey. The survey was intended to generate data on students’ perceptions of electricity consumption in the AC. I had a 100% response rate as everyone that I approached answered the questions on the index cards. 

Units of Analysis 

The units of analyses of the study are the electricity cost, efficiency, energy savings and CO2 emissions Compact Fluorescent Lamp (CFL) at the AC, which is the status quo as well as the same variables for both the standard incandescent and LED lamps. The overall purpose is to see which lamp has the highest electricity efficiency, savings, and less CO2 emissions. 

Data Analysis 

I used a Microsoft Excel 2010 database to calculate the electricity consumption of all 161 CFLs, their efficiency, energy savings and CO2 emissions in pounds (lbs.) and metric tons. I than compare the electricity output, cost, efficiency and CO2 emissions with the hypothetical scenarios; that is, the standard incandescent and LED lamps. I used the Light Bulbs Energy Efficiency Calculator system that I created to evaluate and analyze the efficiency, cost, energy savings and CO2 emissions for each scenario including the status quo. 
The survey data were recorded, cleaned, coded and labeled in a separate Microsoft Excel 2010 database for analysis. The results were used to triangulate results from calculations done using quantitative data of electricity consumption at the AC to explore students’ perceptions of electricity consumption and also promote behavior change. 

RESULTS & DISCUSSIONS

In this section, I present and discuss the findings from the analysis conducted using data collected from quantifying electricity consumed at the AC as well as results for the survey conducted. Results and discussions were done simultaneously while identifying major trends in electricity consumption at the AC. Figure 1 shows the how electricity that we consume comes from difference sources at different locations and each source release GHG into the atmosphere. 



Figure 1: Electricity Production 
Source: KCP&L, 2012 

According to the diagram, the process of electricity generation by the means of burning fossil fuel occurs when fossil fuel is burned at high temperature in a furnace that is known as the boiler. Water is release through the system in series of pipes, which is heated at extreme pressure and temperature to produce steam. At this stage, the high-pressurized steam produce from the high temperature released into the system accelerates numbers of huge fans-like structures within a turbine system. This process caused the fan to spin at high speed at approximate 1,500 mph, which in turn caused a magnet within the rotor to produce electricity. Now that the electricity is produced, it moves from the power plant through a system of transmission into our homes, offices and devices. All alone this linear system of electricity production, about 20-30% of the total energy produced is lost in the form of heat energy (Rosenfeld & Hafemeister, 1988).


Clark University current purchase electricity from the National Grid, which in part is reliant on the energy production process described in Figure 1. Over the last three years, electricity use at Clark has fluctuated, causing the University to become reliant on outside source of electricity generation (ClarkU, 2007). Report indicate that in 2004, Clark’s consumed about 11.5 million kilowatts hour of electricity most of which was used for lighting, ventilation, computing, refrigeration, air conditioning and general purpose use (ClarkU, 2007). In 2005, there was a 6.1 percent increase in electricity consumption followed by a 4.3 percent decreased in 2006 (ClarkU, 2007). Clark is making significant progress in reducing GHG emissions by 2015. In the remaining part of this section, I discuss specific findings from the study within the context of electricity consumption and creating a campus that is environmentally aware and sustainable. 

Demographic Characteristics 

During the study, I was able to administered surveys to fifty-five (55) students who were at the AC at three different intervals during the course of academic week. Respondents were asked brief questions clearly written on several index cards. Some of the demographic characteristics that were selected to describe participants who responded to the surveys include: age, gender, ethnicity, academic year of study, and department of study. I selected these demographic variables to describe the population of the study because of their significance in explaining the cultural diversity and interdisciplinary composition of students who access the AC. I wanted to explore the age range of student respondents who use the AC, so I asked them to give me their age if they were willing voluntarily. All 55 respondents submitted their ages and I collapsed the ages of all 55 respondents into 5 age ranges of 3 years apart. Figure 2 shows the ages of the respondents that answered the survey. The result indicates that 33% of the respondents were between the ages of 21 to 23 years old, 25% between the ages of 18 to 20 years followed by 15% of the age range between 27 to 29 years old and 27% between the age ranges of 21 to 26 years. These results also indicate that the AC is being widely used mostly by young adults between the ages of 18 to 29 years old. This is probably because students seem to consider the space at the AC an avenue to socialize and get contact with other students in other programs and the place to hang out and relax. 


Figure 2: Age of Respondents  

Figure 3 shows the gender of respondents that answered the survey. The result shows that 62% of students that answered the survey were females, while 32% were males. Personal observations on several days of the week during the academic semester confirmed this conclusion that female students at Clark are more likely than their male counterparts to use the Academic Commons as a share space for socialization, meetings and study groups. 



Figure 3: Gender of Survey Respondents 


Another demographic variable that I selected to describe the population is ethnicity. As I previous mentioned, Clark is a small private university that is well known for its cutting-edge liberal arts education that, which seeks to challenge conventions by applying theory to practice in diverse cultural settings. On average, about 40% of graduate and undergraduate students admitted to Clark are from out of the country and the rest 60% are considered domestic students, who are either in state or out-of-state. The diverse nature of the university makes Clark it an interesting community of young scholars and anticipating professionals who are seeking to design and develops innovative ideas to create social and sustainable change. This distinct diversity was also reflected among those who responded to the survey. The grouped ethnicity base on regional classification because of the smaller sample size and to protect the privacy of respondents from location with fewer respondents originally came from. Figure 4 shows the ethnicity of respondents who answered the survey. The result shows that out of the 55 respondents that answered the survey 21 were North American, 11 were East Asian followed by 9 and 8 were African and Southeast Asian respectively. 


Figure 4: Ethnicity of Survey Respondents 

The next demographic variable that I selected to describe the targeted sample group is their academic year of study. This demographic variable does not mean the academic calendar year of study, but the rather the current academic year of the student’s studies, which determines how many time left before the student graduate from Clark. This variable also helps explained the “trans-academic levels” of those who responded to the survey, both undergraduate and graduate students. Figure 5 shows the current academic year of study of respondents who answered the survey. The result confirms that 40% of the respondents were in their second year of study as either undergraduate or graduate students followed by 29% who were in their first year (in either academic level) and 11% for both senior undergraduate students and those in the fifth year master program who just completed their undergraduate and are making the smart choice of competing their master degree within an intensive one year. As proceeding result will show in, these demographic variables provide us with in-depth sociocultural, ethnic and academic background knowledge of the student composition at Clark. These variables may not be directly linked to electricity consumption at the AC, but they could provide us with relevant cultural and demographic background of those who access the facility for academic enrichment, comfort, social support and social networking within the share space. 



Figure 5: Academic Level of Study

Students’ academic levels, that is, whether or not they are undergraduate or graduate students were the fourth demographic variable that I selected to measure outcomes. Students’ level of education is important because it provides some insights into the nature and composition of those answering the survey. At Clark and I am sure at other universities and colleges in the US, there are some courses that both graduate and undergraduate students take together at the same time and provide a much more diverse learning experience. Figure 6 shows the academic levels of the respondents that answered the survey. The result indicates that 73% of respondents that answered the survey were graduate students and 27% were undergraduate students. There are several assumptions that could be used to explain the wide gap between graduate and undergraduate students’ representation at the AC when the survey was administered. The first could be due to the selection of individuals to answer the survey since individuals were selected based on their availability when they were at the AC. Secondly, the higher response rate of graduate students could have been caused by the time of the day and week when most graduate students used the AC for group meetings and follow-up sessions with professors. 


Figure 6: Academic Levels of Survey Respondents

I also became interested to explore how students’ perceptions of electricity use at the AC translate throughout other programs or departments at Clark? Figure 7 report shows the academic department of respondents who answered the surveys. The results indicate that that 51% of the respondents who participated in the survey were graduate students from IDCE, whereas, 31% are from GSOM and 18% from other programs or departments (including Psychology, sociology, Education, Global Environmental Studies and Political Science). 

Figure 7: Academic Levels 

I also asked respondents how many hours per week on average they used the AC? The essence of the question is to capture the insights of those answering the survey about the number average number of hours they stay at the AC weekly. The responses provided useful information on their familiarity with the overall electricity consumption and their perspectives on how energy is being used in providing a comfortable, safe and visible space to enhance learning processes as well as encouraging socialization, leisure and relaxation. The desire to ask the question about the average hours per week that students use the AC came about as a result of discussions with other graduate students during the course of the semester. The discussion was about the indiscriminate and excessive consumption of lights at the AC. Whether or not the electricity consumption for the use of lighting the AC is indiscriminate and excessive came up during as significant finding. 


A total of 55 students answered this question. Figure 8 shows the average hours per week of respondents who use the AC for variety of purposes. The result confirms that on a weekly basis, 23 out of 55 respondents used the AC for 8 to 11 hours, while 20 out of 55 respondents stayed at the AC for 4 to 6 hours. The result represents a normal distribution amongst the entire sample as 43 respondents out of the total number of 55 respondents said, they use the AC on a weekly basis for about 4 to 11 hours. The result also attests to the assertion that the Goddard Library at Clark University, specifically the AC, is the busiest facility on campus and that the entire Goddard Library is the largest consumer of electricity. Electricity use at the Goddard Library and the AC campus is mostly for lighting, computing, ventilation and air-conditioning during the summer because students especially during the winter spend more time in the building than would seem during the summer. 


Figure 8: Average hours per week 

Next, I wanted to explore respondents’ general perception about energy efficiency and what they thought about the current lighting system at the AC. Figure 9 shows respondents’ answered to whether or not they were satisfied with the lamps in the AC. The result indicates that 65% of the respondents said they were satisfied with the lighting systems and 35% said they were not satisfied. These diverse views from respondents who use the AC on a weekly basis led to the conclusion that even though most students think that the lamps (CFLs) at the AC are energy efficient, fewer students think that Clark University can live up to the challenge of significantly minimizing its GHG emissions from electricity consumption through lighting by upgrading to more efficient lamps (LED). 


Figure 9: Respondents' Satisfaction with Lighting at the AC 


Students led initiatives and group projects in courses such as “Sustainable University” have started exploring alternative lighting systems that would have lesser ecological footprint and reduce the overall GHG emissions from electricity generation and consumption at Clark. I
also talked with a staff member of the Office of Sustainability here at Clark and this is what the staff told me about the efficiency of the lamps installed in the AC over the summer: 

“Just last summer we upgraded all the lighting systems in the AC and other buildings on campus. What we need to be thinking about now is switching to more energy efficient lights such as the LED” (Discussion with a staff of the Office of Sustainability). 

The installation of energy efficient lamps at the AC would significantly reduce GHG emissions substantially and would serve as behavior change for students to imitate, which in turn would have exponential impact as students might influence their parents to make “smart energy” choices at home. 

As a follow-up question to respondents’ satisfaction with the lighting system in the AC, I asked whether or not the AC lamps were efficient in turns of electricity consumption? Figure 10 shows respondents’ answered to the question whether or not the lamps in the AC are energy efficient. The result indicates 69% of respondents agreed that the lamps in the AC are energy efficient, while 31% did not agree that the AC lights were energy efficient. This result slightly corresponds with previous result on students’ satisfaction with the lamps at the AC. In both results, respondents’ who were neither satisfied nor think that the lamps in the AC were energy efficient claims that there are too many lights. A graduate student classified the lights in the AC as “excessive use” of electrical energy, which is not a sustainable behavior. 


Figure 10: Energy efficient lamps

As a follow-up question to the previous two questions discussed above, I asked in a hypothetical scenario would you recommend to Physical Plant to change the lamps to more energy efficient lamps. The result shows identical trends in the past two questions related to how efficient the lamps are and how satisfied they were with the lamps at the AC. Figure 11 shows respondents’ agreement whether or not the lamps in the AC should be changed based on recommendations to more energy efficient lamps. The result shows that 30 respondents out of 55 respondents who answered the survey agreed that the lamps in the AC should not be changed; whereas, 25 respondents out of 55 indicated that changing the lamps in the AC to more energy efficient lamps would reduce GHG emissions significantly. These claims were made in follow-up questions with some respondents who expressed interest in further discussions. 


Figure 11: Lamps Change in the AC 

I also took photos of the lights at the AC to help explore the situation of what others considered to be excessive use of electricity and how we do not really need 161 CFL within 11,000 square foot-the total area of the Academic Commons. Figure 12 and 13 are digital photograph take during one of nights when I was collecting data from students in the AC. These photographs all show the arrangements of Compact Fluorescent Lamps (CFL) on the ceiling of the AC all emitting the same amount of lm/w. The question that races through my mind just by glancing at these two photos is “how much light do we need?” 


Figure 12: AC lighting at night 


Figure 13: Lighting at the AC

Now, I shifted my questions to explore conflicting ideas and perceptions among respondents about the claims of indiscriminate and excessive consumption of electricity through the lamps that is immediately observed the moment you enter enter the doors of the AC. I asked respondents to describe if possible, the AC’s electricity consumption through lighting and Figure 14 shows the results of the responses. This chart shows the actual response from respondents’ descriptions of electricity consumption through lighting in the AC. The result indicates that 14% of the respondents agreed that there are plenty of lights, while a little over 13% reported that the lighting systems in the AC is good for study. Additionally, about 11% of the respondents said that electricity consumption in the AC through lighting is inefficient followed by 10% who mentioned that the lights were designed in such a way to that it is “reminiscent” of the architecture of the AC and set it apart from other student centers in the City of Worcester. A little over 9% each said that the lightings are okay and needs improvement. 


14: Respondents' descriptions of lighting use in the AC

In order to conclude this section of the results and discussion exploring respondents’ perceptions of electricity use in the AC through lightings, I respondents to list what would do they usually do when at the AC? Figure 15 shows the list of activities they engaged in while at the AC during the academic. It should be noted that this list is not exhaustive and could change depending on the sampling frame, time and day of the week as well as season of the year. Different population at the AC would yield different categories of activities that students engaged in whilst at the AC. 

However, there would always be similarities on some categories as some students share similar interests and or activities. The result indicates that 33 respondents out of 55 survey respondents reported that they are usually at the AC when they are ready to book Escort Service to go home. These respondents seem to be those who usually study in the main library above the AC. This figure doesn’t speak much about the issues of electricity consumption through the use of lighting, but directs us to some of the interesting variables that students engaged when they are at the AC. 

Figure 15: Respondents' activities at the AC.  

Academic Commons Lighting Findings 

In this section I present and discuss the findings that were derived from the data collected relative to electricity consumption through lighting systems at the AC. The AC currently has 161 Compact Fluorescent Lamps (CFL) installed. The lamps are 30 Watts each and emit 1600 lumens with an efficiency of 53%. I used this information as the status quo against two separate hypothetical scenarios with the same brightness or lumens (as the constant) to determine how we could derive at a more efficient alternative for electricity consumption at the AC through lighting. Figure 16 shows each lamp that was considered in each scenario alone with their respective Watts. As initially discussed above, each of the lamps emit the same lumens per Watts to maintain consistency in brightness; that is, for the scenario 1 (S1), 100W/1600lm would yield an efficiency of 16%, whereas, for scenario 2 (S2), 20W/1600lm would also yield an efficiency of 80%. I already calculated the efficiency of the status quo (SQ) which is 53%. I based my calculations on the total number of lamps currently installed in the AC for CFL, which are about 161 for all two scenarios over the period of 365 days per year at 0.11 cent per kWh purchased from the National Grid. 



Figure 16: Scenarios and types of Lamps

Using the base calculations above, I developed a Microsoft Excel 2010 database to calculate the electricity consume by in terms of Watts per lamp type, the efficiencies of the three scenarios (as described and calculated previously; that is, #lm/#W), lamp type by kilowatt hours per year, cost of electricity consumption through lighting for all three cases per year per 0.11 cent per kWh, energy savings by using efficient lamp and CO2 emissions in pounds (lbs.) and metric tons per year. These calculations were done through the use of the Excel database created and was shared with Dr. Agosta for consultative, directional and instructional purposes. The results are being presented in various charts and graphs. The presentation and discussion of findings are being presented as described above. 
Figure 17 shows the Watt of electricity consumed through lighting per day by types of lamp for the total of 161 lamps in each scenario. The result shows that S1, which is the standard incandescent lamps consumed 16,100 Watts per 100 Watts lamp that burn. In the case, both the CFL and LED lamps consumed significantly lower Watts for all 161 lamps. The difference in terms of Watts consumed between both the LED and CFL lamps is 1610 Watts that if we replace every CFL with LED in the AC. 

Figure 17: Watt consumed by types of lamp

Figure 18 shows electricity consumption through lighting systems for all three scenarios in kilowatt hours per year. The result indicates that if we were to use 1600lm/100w incandescent lamp for all 161 lamps that are currently installed in the AC, we would be consuming 141036kWh/year for scenario1; whereas, with the status quo 1600lm/30w CFL, we are currently consuming 42311kWh/year just for the Academic Commons in terms of electricity consumption through lighting. However, if we switched to 1600lm/20w AC LED Grid systems, we would be consuming 28207kWh/year for scenario2. The switch from CFL to LED would have saved us 14104kWh/year at the cost of $1551.44/year. 

Figure 18: Types of Lamp by kWh/YEAR 

Figure 19 shows the efficiencies of all three scenarios per types of lamp presented. The result demonstrates that AC LED Grid lights have an 80% efficiency rating as compared side-by-side with CFL and the standard incandescent lamps at the same lumens of 1600. The 20 Watts AC LED Grid lamps has efficiency difference of 23% more than the CFL and quadruple the efficiency of 100 Watts incandescent lamps, which emits the same amount of lumens. If we can switch the AC electricity consumption through lighting from CFL to 20 Watts AC LED Grid, we would be saving 23% of our current electricity demand that is being wasted through CFL. The only start-up cost that we will have to pay out front would be the cost of 20 Watts AC LED Grid. Each of the LED grid lamp cost $50.00 and has a lifespan of 60,000 to 70,000 hours.

Figure 19: Efficiency by types of lamp

Figure 20 shows the cost of electricity consumption through lighting per year compared side-by-side with types of lamp in each scenario. At Clark, the average cost per kWh for electricity consumption from the National Grid is 0.11 cent. Using this average cost, the cost for kWh/year for all there scenarios suggest that scenario1 yielded the highest cost per kWh which is $15,514.00/year; whereas, the status quo results into $4,654.00/year and scenario2 shows a total cost of $967.00/year. The difference that we would be saving in terms our electricity demand if we switch to LED is $3687.00/year. 

Figure 20: Cost of electricity consumed to lighting/year 

In the last two Figures (21 and 22), I present and discuss the emissions of CO2 in pounds (lbs. /year) and metric tons per year by types of lamp in each scenarios per kWh/year. The result in Figure 21 indicates that incandescent lamps which consumed 141036kWh/year emits 184193 lbs. of CO2/year; whereas, the compact fluorescent lamps that are currently installed and being used in the AC consumed a total of 42311kWh/year and emits 55258 lbs. of CO2/year, while LED lights consumed 28207kWh/year and emits 36838 lbs. of CO2/year. If we switched the lighting system from CFL to LED at the AC, we would be offsetting 18420 lbs. of CO2/year and also against 147355 lbs. of CO2/year if we switched from incandescent to LED. 

Figure 21: lbs. of CO2 emitted/Year/kWh

Comparatively, the result in Figure 22 suggests that incandescent lamps which consumed 141036kWh/year emit 83.56 metric tons of CO2/year. Similarly, the compact fluorescent lamps that are currently installed and being used in the AC consumed a total of 42311kWh/year and emit 25.06 metric tons of CO2/year, while at the same time LED lights consumed 28207kWh/year and emit 16.71 metric tons of CO2/year. If we switched the lighting system from CFL to LED at the AC, we would be offsetting 8.35 metric tons of CO2/year and against 66.85 metric tons of CO2/year if we switched from incandescent to LED, which is 4(x) more metric tons of CO2/year emitted using LED. 


Figure 22: Metric tons of CO2 emitted/Year/kWh


Conclusion 

The Goddard Library is the building on campus that consumes a lot of energy and emits almost half of the greenhouse gas emissions on campus (ClarkU, 2007). The Academic Commons (AC) was recently added to the library complex as part of an initiative to install cutting-edge technology, architecture and design to the edifice. The AC is the busiest facility on campus that is mostly used by students, staff, and faculty as well as community members. The AC is open throughout the year 24 hours/day 7 days/week and occasionally during summer and winter breaks. 

Students at the AC are sometimes there for socializing, conducting group meets, and meeting with faculty members for guidance and supervision, social networking and or “just hanging out” as one respondent indicated. As such, the lights in the facility are always illuminated even during sunny days when visibility in the facility does not require lighting. The compact fluorescent lamps (CFLs) that are currently in the facility were installed last summer. However, based on personal observations, survey conducted amongst students and electricity consumption through lighting data analyses using three distinct and interrelated scenarios suggest that even though the lamps in the AC are 53% efficient, we can do more by upgrading the lighting systems to more efficient ones. Against this backdrop and based on findings discussed previously, there is urgency to reduce CO2 and other GHG emissions by installing more energy efficient lamps such as the 1600 lumens/20 Watts, which would yield efficiency of 80% and save Clark money as well as reducing our ecological footprint. 

Works Cited 


USBC. (2001). Statistical Abstract of the United States 2000, Washington, DC, US Bureau of the Census, US Government Printing Office. 
ClarkU. (2007). An Assessment of Clark University's Environmental Impact. Worcester: Clark University. 
ClarkU. (2009). The Clark University Climate Action Plan. Worcester: Clark University. 
DOE. (2003). The Energy Smart Guide to Campus Cost Savings. Washington, D.C.: United States Department of Energy. 
EPA. (2007). Energy Trends in Selected Manufacturing Sectors: Opportunities and Challenges for Environmentally Preferable Energy Outcomes. Fairfax, VA: United States Environmental Protection Agency. 
IPCC. (2001). Climate Change 2001: The Scientific Basis. . Cambridge, UK: Intergovernmental Panel on Climate Change. 
IPCC. (2007). Summary for Policymakers Cambridge, UK: Intergovernmental Panel on Climate Change. 
Pimentel, D., Pleasant, A., Barron, J., Gaudioso, J., Pollock, N., Chea, E., et al. (2003). U.S. Energy Conservation and Efficiency: Benefits and Costs. Journal of Environment, Development and Sustainability, 6, 279-305. 
Rosenfeld, A. H., & Hafemeister, D. (1988). Energy-efficient Buidings. 
Watson, R. T., Albritton, D. L., Barker, T., Bashmakov, I. A., Canziani, O., Christ, R., et al. (2001). IPCC Third Assessment Report. Wembley, United Kingdom: Intergovernmental Panel on Climate Change. 
York, C. M. (1980). An Analysis of Energy Use on Community College Campuses. Lawrence Berkeley National Laboratory, LBNL Paper LBL-11257

Solid-waste Management in Humanitarian Response

Solid-waste Management in Humanitarian Response I am seeking three very committed individuals to develop an innovative project, which seek...